机器学习是一门多学科交叉专业,涵盖概率论知识,统计学知识,近似理论知识和复杂算法知识,使用计算机作为工具并致力于真实实时的模拟人类学习方式,并将现有内容进行知识结构划分来有效提高学习效率。
111
机器学习有下面几种定义:
(1)机器学习是一门人工智能的科学,该领域的主要研究对象是
人工智能,特别是如何在经验学习中改善具体算法的性能。
(2)机器学习是对能通过经验自动改进的计算机算法的研究。
(3)机器学习是用数据或以往的经验,以此优化计算机程序的性能标准。
机器学习的分类
几十年来,研究发表的机器学习的方法种类很多,根据强调侧面的不同可以有多种分类方法。
基于学习策略的分类
(1)模拟人脑的机器学习
符号学习:模拟人脑的宏现心理级学习过程,以认知
心理学原理为基础,以符号数据为输入,以符号运算为方法,用推理过程在图或状态空间中搜索,学习的目标为概念或规则等。符号学习的典型方法有记忆学习、示例学习、演绎学习.类比学习、解释学习等。
神经网络学习(或连接学习):模拟人脑的微观生理级学习过程,以脑和神经科学原理为基础,以人工神经网络为函数结构模型,以数值数据为输人,以数值运算为方法,用迭代过程在系数
向量空间中搜索,学习的目标为函数。典型的连接学习有权值修正学习、拓扑结构学习。
(2)直接采用数学方法的机器学习
主要有统计机器学习。
统计机器学习是基于对数据的初步认识以及学习目的的分析,选择合适的数学模型,拟定超参数,并输入样本数据,依据一定的策略,运用合适的学习算法对模型进行训练,最后运用训练好的模型对数据进行分析预测。
统计机器学习三个要素:
模型(model):模型在未进行训练前,其可能的参数是多个甚至无穷的,故可能的模型也是多个甚至无穷的,这些模型构成的集合就是假设空间。
策略(strategy):即从假设空间中挑选出参数最优的模型的准则。模型的分类或预测结果与实际情况的误差(损失函数)越小,模型就越好。那么策略就是误差最小。
算法(algorithm):即从假设空间中挑选模型的方法(等同于求解最佳的模型参数)。机器学习的参数求解通常都会转化为
最优化问题,故学习算法通常是最优化算法,例如最速梯度下降法、牛顿法以及拟牛顿法等。
基于学习方法的分类
(1)归纳学习
符号归纳学习:典型的符号归纳学习有示例学习、决策树学习。
函数归纳学习(发现学习):典型的函数归纳学习有神经网络学习、示例学习、发现学习、统计学习。
(2)演绎学习
(3)类比学习:典型的类比学习有案例(范例)学习。
(4)分析学习:典型的分析学习有解释学习、宏操作学习。
基于学习方式的分类
(1)监督学习(有导师学习):输入数据中有导师信号,以概率函数、
代数函数或人工神经网络为基函数模型,采用
迭代计算方法,学习结果为函数。
(2)无监督学习(无导师学习):输入数据中无导师信号,采用
聚类方法,学习结果为类别。典型的无导师学习有发现学习、聚类、竞争学习等。
(3)强化学习(增强学习):以环境反惯(奖/惩信号)作为输入,以统计和动态规划技术为指导的一种学习方法。
基于数据形式的分类
(1)结构化学习:以结构化数据为输人,以数值计算或符号推演为方法。典型的结构化学习有神经网络学习、统计学习、决策树学习、规则学习。
基于学习目标的分类
(1)概念学习:学习的目标和结果为概念,或者说是为了获得概念的学习。典型的概念学习主要有示例学习。
(2)规则学习:学习的目标和结果为规则,或者为了获得规则的学习。典型规则学习主要有决策树学习。
(3)函数学习:学习的目标和结果为函数,或者说是为了获得函数的学习。典型函数学习主要有神经网络学习。
(4)类别学习:学习的目标和结果为对象类,或者说是为了获得类别的学习。典型类别学习主要有聚类分析。
(5)贝叶斯网络学习:学习的目标和结果是贝叶斯网络,或者说是为了获得贝叶斯网络的一种学习。其又可分为结构学习和多数学习。
常见算法
决策树算法
决策树及其变种是一类将输入空间分成不同的区域,每个区域有独立参数的算法。决策树算法充分利用了树形模型,根节点到一个叶子节点是一条分类的路径规则,每个
叶子节点象征一个判断类别。先将样本分成不同的子集,再进行分割递推,直至每个子集得到同类型的样本,从根节点开始测试,到子树再到叶子节点,即可得出预测类别。此方法的特点是结构简单、处理数据效率较高。
朴素贝叶斯算法
朴素贝叶斯算法是一种分类算法。它不是单一算法,而是一系列算法,它们都有一个共同的原则,即被分类的每个特征都与任何其他特征的值无关。
朴素贝叶斯分类器认为这些“特征”中的每一个都独立地贡献概率,而不管特征之间的任何相关性。然而,特征并不总是独立的,这通常被视为朴素贝叶斯算法的缺点。简而言之,
朴素贝叶斯算法允许我们使用概率给出一组特征来预测一个类。与其他常见的分类方法相比,朴素贝叶斯算法需要的训练很少。在进行预测之前必须完成的唯一工作是找到特征的个体概率分布的参数,这通常可以快速且确定地完成。这意味着即使对于高维数据点或大量数据点,朴素贝叶斯分类器也可以表现良好。
支持向量机算法
基本思想可概括如下:首先,要利用一种变换将空间高维化,当然这种变换是非线性的,然后,在新的复杂空间取最优线性分类表面[8]。由此种方式获得的分类函数在形式上类似于神经网络算法。
支持向量机是统计学习领域中一个代表性算法,但它与传统方式的思维方法很不同,输入空间、提高维度从而将问题简短化,使问题归结为线性可分的经典解问题。支持向量机应用于垃圾邮件识别,人脸识别等多种分类问题。
随机森林算法
控制数据树生成的方式有多种,根据前人的经验,大多数时候更倾向选择分裂属性和剪枝,但这并不能解决所有问题,偶尔会遇到噪声或分裂属性过多的问题。基于这种情况,总结每次的结果可以得到袋外数据的估计误差,将它和测试样本的估计误差相结合可以评估组合树学习器的拟合及预测精度。此方法的优点有很多,可以产生高精度的分类器,并能够处理大量的变数,也可以平衡分类资料集之间的误差。
人工神经网络算法
人工神经网络与神经元组成的异常复杂的网络此大体相似,是个体单元互相连接而成,每个单元有数值量的输入和输出,形式可以为实数或线性组合函数。它先要以一种学习准则去学习,然后才能进行工作。当网络判断错误时,通过学习使其减少犯同样错误的可能性。此方法有很强的泛化能力和非线性映射能力,可以对信息量少的系统进行模型处理。从功能模拟角度看具有并行性,且传递信息速度极快。
Boosting与Bagging算法
Boosting是种通用的增强基础算法性能的
回归分析算法。不需构造一个高精度的回归分析,只需一个粗糙的基础算法即可,再反复调整基础算法就可以得到较好的组合回归模型。它可以将弱学习算法提高为强学习算法,可以应用到其它基础回归算法,如
线性回归、神经网络等,来提高精度。Bagging和前一种算法大体相似但又略有差别,主要想法是给出已知的弱学习算法和训练集,它需要经过多轮的计算,才可以得到预测函数列,最后采用投票方式对示例进行判别。
关联规则算法
关联规则是用规则去描述两个变量或多个变量之间的关系,是客观反映数据本身性质的方法。它是机器学习的一大类任务,可分为两个阶段,先从资料集中找到高频项目组,再去研究它们的关联规则。其得到的分析结果即是对变量间规律的总结。
[3]
EM(期望最大化)算法
在进行机器学习的过程中需要用到
极大似然估计等参数估计方法,在有潜在变量的情况下,通常选择EM算法,不是直接对函数对象进行极大估计,而是添加一些数据进行简化计算,再进行极大化模拟。它是对本身受限制或比较难直接处理的数据的
极大似然估计算法。
深度学习
深度学习(DL,Deep Learning)是机器学习(ML,Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI,Artificial Intelligence)。
深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。
深度学习在搜索技术、
数据挖掘、机器学习、
机器翻译、
自然语言处理、多媒体学习、语音、推荐和个性化技术,以及其他相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。
应用
机器学习应用广泛,无论是在军事领域还是民用领域,都有机器学习算法施展的机会,主要包括以下几个方面。
数据分析与挖掘
“数据挖掘”和"数据分析”通常被相提并论,并在许多场合被认为是可以相互替代的术语。关于数据挖掘,已有多种文字不同但含义接近的定义,例如“识别出巨量数据中有效的.新颖的、潜在有用的最终可理解的模式的非平凡过程”,无论是数据分析还是数据挖掘,都是帮助人们收集、分析数据,使之成为信息,并做出判断,因此可以将这两项合称为数据分析与挖掘。
数据分析与挖掘技术是机器学习算法和数据存取技术的结合,利用机器学习提供的统计分析、知识发现等手段分析海量数据,同时利用数据存取机制实现数据的高效读写。机器学习在数据分析与挖掘领域中拥有无可取代的地位,2012年
Hadoop进军机器学习领域就是一个很好的例子。
模式识别
模式识别起源于工程领域,而机器学习起源于计算机科学,这两个不同学科的结合带来了模式识别领域的调整和发展。模式识别研究主要集中在两个方面。
(1)研究生物体(包括人)是如何感知对象的,属于认识科学的范畴。
(2)在给定的任务下,如何用计算机实现模式识别的理论和方法,这些是机器学习的长项,也是机器学习研究的内容之一。
凑凑热闹哈哈哈